Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antibodies (Basel) ; 11(2)2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1792853

ABSTRACT

During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 °C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context.

2.
Expert Rev Proteomics ; 17(7-8): 513-532, 2020.
Article in English | MEDLINE | ID: covidwho-759817

ABSTRACT

INTRODUCTION: Viruses induce profound changes in the cells they infect. Understanding these perturbations will assist in designing better therapeutics to combat viral infection. System-based proteomic assays now provide unprecedented opportunity to monitor large numbers of cellular proteins. AREAS COVERED: This review will describe various quantitative and functional mass spectrometry-based methods, and complementary non-mass spectrometry-based methods, such as aptamer profiling and proximity extension assays, and examples of how each are used to delineate how viruses affect host cells, identify which viral proteins interact with which cellular proteins, and how these change during the course of a viral infection. PubMed was searched multiple times prior to manuscript submissions and revisions, using virus, viral, proteomics; in combination with each keyword. The most recent examples of published works from each search were then analyzed. EXPERT OPINION: There has been exponential growth in numbers and types of proteomic analyses in recent years. Continued development of reagents that allow increased multiplexing and deeper proteomic probing of the cell, at quantitative and functional levels, enhancements that target more important protein modifications, and improved bioinformatics software tools and pathway prediction algorithms will accelerate this growth and usher in a new era of host proteome understanding.


Subject(s)
Proteome/genetics , Proteomics , Viral Proteins/genetics , Virus Diseases/genetics , Chromatography, Liquid , Computational Biology , Host-Pathogen Interactions/genetics , Humans , Mass Spectrometry , Software , Viral Proteins/isolation & purification , Virus Diseases/pathology , Virus Diseases/virology
3.
J Biomol Struct Dyn ; 39(11): 4089-4099, 2021 07.
Article in English | MEDLINE | ID: covidwho-610639

ABSTRACT

An rare pandemic of viral pneumonia occurs in December 2019 in Wuhan, China, which is now recognized internationally as Corona Virus Disease 2019 (COVID-19), the etiological agent classified as Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). According to the World Health Organization (WHO), it has so far expanded to more than 213 countries/territories worldwide. Our study aims to find the viral peptides of SARS-COV-2 by peptide mass fingerprinting (PMF) in order to predict its novel structure and find an inhibitor for each viral peptide. For this reason, we calculated the mass of amino acid sequences translated from the SARS-CoV2 whole genome and identify the peptides that may be a target for inhibition. Molecular peptide docking with Moringa oleifera, phytochemicals (aqueous and ethanolic) leaf extracts of flavonoids (3.56 ± 0.03), (3.83 ± 0.02), anthraquinone (11.68 ± 0.04), (10.86 ± 0.06) and hydroxychloroquine present therapy of COVID-19 in Pakistan for comparative study. Results indicate that 15 peptides of SARS-CoV2 have been identified from PMF, which is then used as a selective inhibitor. The maximum energy obtained from AutoDock Vina for hydroxychloroquine is -5.1 kcal/mol, kaempferol (flavonoid) is -6.2 kcal/mol, and for anthraquinone -6 kcal/mol. Visualization of docking complex, important effects are observed regarding the binding of peptides to drug compounds. In conclusion, it is proposed that these compounds are effective antiviral agents against COVID-19 and can be used in clinical trials.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Moringa oleifera , Anthraquinones , Flavonoids/pharmacology , Humans , Hydroxychloroquine , Peptides , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL